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Prokaryotic nanocompartments form synthetic
organelles in a eukaryote
Yu Heng Lau 1,2,3, Tobias W. Giessen1,2, Wiggert J. Altenburg1,2 & Pamela A. Silver1,2

Compartmentalization of proteins into organelles is a promising strategy for enhancing the

productivity of engineered eukaryotic organisms. However, approaches that co-opt endo-

genous organelles may be limited by the potential for unwanted crosstalk and disruption of

native metabolic functions. Here, we present the construction of synthetic non-endogenous

organelles in the eukaryotic yeast Saccharomyces cerevisiae, based on the prokaryotic family of

self-assembling proteins known as encapsulins. We establish that encapsulins self-assemble

to form nanoscale compartments in yeast, and that heterologous proteins can be selectively

targeted for compartmentalization. Housing destabilized proteins within encapsulin com-

partments afford protection against proteolytic degradation in vivo, while the interaction

between split protein components is enhanced upon co-localization within the compartment

interior. Furthermore, encapsulin compartments can support enzymatic catalysis, with sub-

strate turnover observed for an encapsulated yeast enzyme. Encapsulin compartments

therefore represent a modular platform, orthogonal to existing organelles, for programming

synthetic compartmentalization in eukaryotes.

DOI: 10.1038/s41467-018-03768-x OPEN

1Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA. 2Department of Systems Biology,
Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA. 3 School of Chemistry, The University of Sydney, Eastern AvenueNSW 2006
Sydney, Australia. These authors contributed equally: Yu Heng Lau, Tobias W. Giessen. Correspondence and requests for materials should be addressed to
P.A.S. (email: pamela_silver@hms.harvard.edu)

NATURE COMMUNICATIONS |  (2018) 9:1311 | DOI: 10.1038/s41467-018-03768-x |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6560-8410
http://orcid.org/0000-0001-6560-8410
http://orcid.org/0000-0001-6560-8410
http://orcid.org/0000-0001-6560-8410
http://orcid.org/0000-0001-6560-8410
mailto:pamela_silver@hms.harvard.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Intracellular compartmentalization is a fundamental strategy
used by all organisms to organize and optimize their meta-
bolism. Examples of compartments in nature range from

eukaryotic lipid-bound organelles to prokaryotic protein-based
containers1–4, and their functions include sequestering toxic
metabolic products, generating distinct biochemical environ-
ments, and stabilizing otherwise unstable proteins and biosyn-
thetic intermediates. The ability to incorporate similar functional
properties in engineered organisms could lead to significant
improvements in metabolic engineering and recombinant protein
expression5,6. However, efforts to reprogram naturally occurring
compartments for synthetic applications are challenging due to
their inherent complexity and the large number of different
biomacromolecules involved7–10. We therefore identified the
encapsulin family of self-assembling prokaryotic proteins as a
highly engineerable candidate suitable for designing program-
mable synthetic organelles in eukaryotes11–14.

Encapsulins are 25–40 nm diameter hollow compartments
comprised of 60 or 180 copies of a single self-assembling capsid
protein11,12. The varied native functions of encapsulins all involve
packaging proteins within their interior as part of the self-
assembly process to tailor the activity of packaged components. In
vivo protein encapsulation is guided by short targeting peptides
(TPs), which are located at the C-termini of cargo proteins. A
large variety of native cargo proteins has been identified in bac-
teria and archaea, including peroxidases and ferritin-like proteins
involved in stress response pathways11,14–16. Encapsulins have
been the subject of several recent engineering and characteriza-
tion studies17–20, and using Escherichia coli as a host, it has been
shown that packaging of nonnative proteins into the encapsulins
from Thermotoga maritima and Brevibacterium linens can be
achieved by fusion of TPs to the intended cargo21,22.

Given their modularity and programmability, encapsulins are
an ideal platform for building synthetic compartmentalization in
eukaryotes. In contrast to approaches that leverage existing
organelles23–26, encapsulins have the advantage of being com-
pletely orthogonal to endogenous eukaryotic compartments.
There is also ample choice of different encapsulin protein variants
derived from different families of bacteria and archaea. In par-
ticular, the encapsulin from Myxococcus xanthus has been
structurally characterized, and has the ability to simultaneously
package three different proteins in its native form14.

Here, we present the construction of synthetic organelles in the
yeast Saccharomyces cerevisiae, based on the M. xanthus encap-
sulin14. We show that encapsulin compartments can stabilize
heterologous cargo proteins against degradation, co-localize
proteins within their interior, and act as nanoreactors for hous-
ing enzymatic catalysts (Fig. 1a). In doing so, we demonstrate that
protein-based compartments can mimic the ability of eukaryotic
organelles to control protein localization and activity in living
cells.

Results
Self-assembly of cargo-loaded encapsulins in yeast. Expression
and self-assembly of encapsulin compartments in yeast were
achieved using a plasmid containing the encapsulin gene EncA
from M. xanthus14 under the control of the inducible GAL1
promoter (Fig. 1b). A clear induction band was observed by SDS-
PAGE for cultures grown in galactose induction media, corre-
sponding to the 32.5 kDa encapsulin monomer (Supplementary
Fig. 3). The identity of the band was confirmed to be EncA by
mass spectrometry (Supplementary Fig. 4). Isolation of the
encapsulin compartments was achieved by PEG precipitation
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Fig. 1 Expression, assembly and cargo loading of encapsulins in yeast. a Co-expression of encapsulin and targeted cargo in yeast results in self-assembly of
cargo-loaded nanocompartments, with an internal diameter of 26 nm (structure from PDB: 4PT2). Encapsulin compartments can stabilize and co-localize
cargo proteins, as well as allow for catalysis to occur within their interior. b Encapsulin EncA (Enc, 32.5 kDa) from Myxococcus xanthus can be purified to
homogeneity from yeast, as determined by SDS-PAGE and TEM. Full gel image is shown in Supplementary Fig. 1. Scale bars: zoom out: 400 nm, zoom in:
50 nm. c Heterologous proteins such as mNeonGreen (mNeon, 28.4 kDa) can be packaged inside encapsulin compartments, as determined by SDS-PAGE
and TEM on the co-purified sample. Full gel image is shown in Supplementary Fig. 2. M1= Color Prestained Protein Ladder, Broad Range (11–245 kDa,
NEB). Scale bars: zoom out: 200 nm, zoom in: 50 nm
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from the cell lysate, followed by size-exclusion and ion-exchange
chromatography, resulting in a pure sample of encapsulin as
determined by SDS-PAGE (Fig. 1b and Supplementary Fig. 2).
Under native PAGE conditions, the size of the encapsulin particle
was > 1 MDa, consistent with the formation of a self-assembled
capsid structure (Supplementary Fig. 5). Transmission electron
microscopy (TEM) of negatively stained samples confirmed that
the purified encapsulins were highly homogeneous spherical
capsids with the expected diameter of 32 nm14 (Fig. 1b and
Supplementary Fig. 6).

In vivo self-assembly of protein cargo inside encapsulins was
demonstrated using the fluorescent protein mNeonGreen with a
C-terminal fused TP (sequence PEKRLTVGSLRR) under the
control of the constitutive TDH3 promoter (Fig. 1c). After
encapsulin induction and subsequent purification of the capsids
from yeast, co-purification of mNeonGreen with encapsulin was
observed by SDS-PAGE (Fig. 1c). The cargo loading percentage
relative to encapsulin was estimated to be 24% (~43 molecules per
compartment) based on gel densitometry. Fluorescence was also
confirmed to be associated with the assembled capsids by in-gel
fluorescence of the purified encapsulin band on a native PAGE
gel (Supplementary Fig. 7). Confirmation that the cargo-loaded
encapsulins had assembled as expected was obtained by TEM
(Fig. 1c). Furthermore, the purified encapsulins were remarkably
stable over time, with minimal deterioration observed by native
PAGE and TEM despite storage for 2 months at 4 oC in Tris
buffer (Supplementary Fig. 8).

Protection of encapsulated cargo from degradation in vivo.
Cargo proteins packaged inside encapsulin compartments were
protected against proteolytic degradation (Fig. 2). A destabilized
cargo protein was created by appending mNeonGreen with a C-
terminal CLN2-PEST degradation tag, followed by the TP for

encapsulation. Yeast cells expressing this unstable fusion protein
(mN-PEST-TP) only showed high levels of in vivo fluorescence
when co-expressed with encapsulin, as determined in bulk mea-
surements (Fig. 2b) and by fluorescence microscopy of individual
cells (Fig. 2c). Minimal fluorescence intensity was observed when
the TP was removed or the encapsulin was not induced. Based on
bulk plate-reader fluorescence measurements (Fig. 2d), an 11-fold
increase was observed for cargo protein levels as a result of
encapsulation.

The stabilization effect of encapsulation was also observed after
inhibition of new protein synthesis (Fig. 2e). Upon inhibition
using cyclohexamide, yeast cells expressing only the destabilized
cargo showed a gradual loss of fluorescence over 2 h. In
comparison, yeast cells co-expressing the cargo and encapsulin
maintained a constant level of fluorescence over 2 h period. To
confirm the integrity of the encapsulin compartments, the loaded
compartments were co-purified from yeast as before, displaying
associated fluorescence by PAGE, and proper assembly by TEM
(Fig. 2f and Supplementary Fig. 9).

Co-localization of split proteins within encapsulins. Multiple
heterologous proteins can be co-localized inside encapsulin
compartments (Fig. 3a). Using an established split-Venus sys-
tem27, an elevated level of fluorescence was only observed when
both split components were targeted for encapsulation, and the
encapsulin gene itself was present and induced (Fig. 3b–d). A 2.5-
fold increase in fluorescence intensity was observed, consistent
with the fluorescence response previously reported when the split
components are co-localized27 (Fig. 3c). Co-encapsulation of two
distinct proteins did not disturb encapsulin assembly as indicated
by the high molecular weight band on native PAGE (Fig. 3e) and
the readily assembled particles observed using TEM (Fig. 3f). The
split components were estimated to have a cargo loading
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Fig. 2 Protein stabilization in yeast using encapsulins. a Encapsulation of cargo proteins can enhance stability against proteolytic degradation. Destabilized
mNeonGreen bearing a PEST degradation tag shows an increase in in vivo lifetime as determined using a variety of experimental techniques. b Bulk images
of live yeast cells show greater fluorescence intensity corresponding to stabilized mNeonGreen cargo only when the targeting peptide (TP) and the
encapsulin are present. c Images of live yeast cells by fluorescence microscopy show an elevated level of fluorescence only in the presence of encapsulin.
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mNeonGreen cargo levels only when the TP and the encapsulin are present. e Upon inhibiting protein synthesis using cyclohexamide, destabilized
mNeonGreen was protected from degradation only when encapsulated. f Isolation of the loaded encapsulins from yeast showed co-purification with
destabilized mNeonGreen (mNeon-PEST-TP, 47.6 kDa) by SDS-PAGE and TEM. Full gel image is shown in Supplementary Fig. 2. M1=Color Prestained
Protein Ladder, Broad Range (11–245 kDa, NEB). Error bars represent the standard deviation of four biological replicates. Scale bars: zoom out: 800 nm,
zoom in: 50 nm
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percentage of 42% for Ven-N and 30% for Ven-C (~76 and 54 per
compartment, respectively) based on SDS-PAGE analysis
(Fig. 3f).

Catalytic turnover of an encapsulated yeast enzyme. Finally,
enzyme-loaded encapsulins were shown to be viable nanoreactors
for catalytic processes. The assembled encapsulin structure14

contains small 5–10 Å sized pores, which in principle, can allow
small molecule substrates and products to diffuse in and out of the
compartment. The candidate enzyme chosen for encapsulation
was Aro10p, a tetrameric pyruvate decarboxylase enzyme that is
endogenous to yeast, participating in the catabolism of aromatic
amino acids such as tyrosine (Fig. 4a). In particular, Aro10p
catalyzes the decarboxylation of 4-hydroxyphenylpyruvate (4-
HPP) to 4-hydroxyphenylacetaldehyde (4-HPAA)28. There is

pGAL1

Targeting
peptide (TP)

Proteins co-localized
inside encapsulins

N-Ven

pTDH3

C-Ven

pTEF1

Enc

pGAL1

Targeting
peptide (TP)

Proteins not co-localized,
no fluorescence

N-Ven

pTDH3

C-Ven

pTEF1

Enc

Enc uninduced Enc induceda

1236

kDa

720

480

242

146

66

20

Enc +
N-Ven +
C-Ven

Enc +
N-Ven +
C-VenM2 M2

Enc +
N-Ven +
C-Ven

(>5 MDa)

+ Enc

Phase contrast Merge

– Enc

10 µm 10 µm

10 µm10 µm

10 µm

10 µm

Split Venus
fluorescence

d e

TP-N

TP-C

+ + – +

+ + + –

Enc gene
present

– + + +

Enc induced

Enc uninduced

0

1

2

3
Enc uninduced

Enc +
N-Ven +
C-Ven

Targeting
peptide N

absent

Targeting
peptide C

absent

Enc 
gene

absent

R
el

at
iv

e 
flu

or
es

ce
nc

e 
(5

45
 n

m
)

Enc induced

b c

M1

Enc +
N-Ven +
C-Ven

C-Ven

N-Ven

Enc

245

kDa

190
135
100
80

58

46

32

25

22

17

11

f

Fig. 3 Protein co-localization and encapsulation in yeast. a Co-encapsulation of split-Venus components led to an increase in fluorescence intensity as
determined by a variety of experimental techniques. b Bulk images of live yeast cells show greater fluorescence intensity only when both targeting peptides
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great interest in the production of 4-HPAA in yeast, as its reaction
with dopamine via Pictet-Spengler cyclization leads to norco-
claurine, a key intermediate for the heterologous production of
many valuable medicinal benzylisoquinoline alkaloids of the
opioid family29–31. Two challenges associated with 4-HPAA
production in yeast are instability due to endogenous aldehyde
and alcohol dehydrogenases, and toxicity effects associated with
aldehyde reactivity32,33. We sought to test if Aro10p could be
encapsulated within encapsulins as a potential route toward
addressing these challenges.

Encapsulin nanoreactors containing the Aro10p-TP enzyme
displayed enzymatic 4-HPP decarboxylation activity (Fig. 4b).
Comparing the encapsulins purified from yeast strains co-
expressing either Aro10p-TP or Aro10p with no TP, only the
encapsulins co-expressed with Aro10p-TP showed in vitro
enzymatic activity in the presence of 4-HPP. Enzymatic activity
of purified encapsulins was determined by spontaneous Pictet-
Spengler cyclization of the 4-HPAA product with dopamine to
give norcoclaurine, which could then be detected by QTOF-
LCMS (Supplementary Fig. 11). To confirm the fidelity of the
targeting process, the purified encapsulins with TP or no TP were
compared by SDS-PAGE, indicating the presence of Aro10p only
when the TP was present (Supplementary Fig. 12).

Discussion
In this work, we establish encapsulins as a platform for engi-
neering synthetic compartmentalization in yeast. There are sev-
eral key features of encapsulins that distinguish them from other
related compartmentalization systems currently being studied.
The first is the ability to self-assemble with its associated cargo
in vivo, using only a single repeating protein unit and short
peptide tag. Other proteinaceous organelles, such as bacterial
microcompartments, are comprised of many different protein
subunits and thus entail a higher degree of complexity. Although
significant progress has been made toward understanding the
molecular principles governing these complex systems1,10, our
incomplete understanding is still a bottleneck for repurposing
such systems as synthetic organelles.

The orthogonality of encapsulins in the context of eukaryotic
organisms is another distinct aspect of our approach to synthetic
compartmentalization. Recent reports have explored the locali-
zation of engineered proteins to eukaryotic compartments such as
the peroxisome25,26, mitochondria23, and vacuoles34. In addition,
the Arc protein of eukaryotic neurons was recently found to form
virus-like compartments35,36, which may have potential for future
engineering applications. While large scale reprogramming may
be tolerated for some native organelles, essential functions may be
perturbed. The other restriction imposed when using native
organelles is that the protein import mechanism, biochemical
environment, and substrate permeability may also be difficult to
modify. There are examples where the organelle environment is
advantageous, such as using the oxidative environment of the
mitochondria23. In a completely orthogonal synthetic compart-
ment, these parameters can be tailored with much greater
freedom.

Encapsulins present a tunable platform for maximizing the
productivity of engineered pathways. The encapsulin targeting
system enables co-localization of multiple enzymes. Co-
localization could lead to significant rate enhancements for
reactions involving unstable or toxic intermediates, or
in situations where a high local concentration of the intermediate
is required37. The levels of each enzyme within encapsulins could
be controlled by modifying the TP sequence and hence the
strength of its interaction with the encapsulin protein. Substrate
accessibility may be tuned by engineering the residues adjacent to

the compartment pores. Furthermore, almost 1000 encapsulin
variants have been reported11, thereby providing compartments
with different diameters, surface charges, pore sizes, and other
biophysical properties that can be chosen.

In conclusion, we have shown that encapsulin compartments
display many of the properties required for building synthetic
organelles in eukaryotes. Encapsulin compartments can extend
the lifetime of unstable proteins, and co-localize proteins to
induce proximity effects. The encapsulin platform is also capable
of serving as a nanoreactor, with encapsulated enzymes displaying
catalytic activity. Taken together, the encapsulin system is mod-
ular and robust, with potential applications for enhancing protein
production and metabolic engineering in yeast. This work now
paves the way for future studies on controlling new enzymatic
chemistry within encapsulins, and the integration of encapsulin
organelles into engineered yeast metabolism.

Methods
Molecular biology and cloning. All inserts were synthesized as codon-optimized
gBlocks (IDT), and Sanger sequencing was performed by Genewiz or Eton
Bioscience. All plasmids were cloned by Gibson assembly using NEBuilder HiFi
DNA Assembly Master Mix (NEB). The destination vector for the inserts was the
2μ plasmid pAG423GAL-ccdB (Addgene #14149). See Supplementary Methods
and Supplementary Table 1 for further details of the construction, and the asso-
ciated GenBank files for full sequence details. Plasmids were first cloned in 5-alpha
competent E. coli (NEB), isolated by miniprep, and then transformed into the CEN.
PK2-1D strain of S. cerevisiae (Euroscarf) using the high efficiency LiAc/SS carrier
DNA/PEG method described by Gietz and Schiestl38. Linear constructs were
obtained from synthetic gBlocks and transformed directly into CEN.PK2-1D strain
of S. cerevisiae (Euroscarf) using the high efficiency LiAc/SS carrier DNA/PEG
method described by Gietz and Schiestl38. Cassettes were directed to disrupt the
HO locus of the yeast genome. Selection for the KanMX resistance marker was
carried out on G418 plates. Integrants were confirmed by PCR and sequencing of
the integrated cassette, starting from regions outside the cassette.

Encapsulin expression and purification. Overnight 5 mL liquid cultures of yeast
strains in synthetic defined dropout media were diluted into 50 mL of fresh media
and grown at 30 oC for 18–24 h. Cells were resuspended in 6 mL PBS buffer and
lysed using glass beads, and then sodium chloride and PEG-8000 were added to the
soluble fraction to a final concentration of 0.5 M and 8%, respectively. After sitting
for 15 min on ice, the precipitate was isolated, redissolved in 2 mL PBS buffer, and
purified by size exclusion using a HiPrep 16/60 Sephacryl S-500 HR column (GE
Healthcare) in PBS buffer (1 mL/min) on an AKTA Explorer (Amersham Bios-
ciences). The encapsulin fractions were concentrated using Amicon Ultra-15
Centrifugal Filter Units with Ultracel-100 membrane (Millipore), then diluted in
2 mL of 20 mM Tris buffer at pH 8. Ion-exchange chromatography using a HiPrep
DEAE FF 16/10 column (GE Healthcare) resulted in the fully purified encapsulin
sample for further analysis. The gradient used for ion-exchange was as follows:
100% A for 0–100 mL, 100% A to 50% A+ 50% B for 100–200 mL, 100% B for
200–300 mL, 100% A for 300–400 mL; where A is 20 mM Tris pH 8, B is 20 mM
Tris pH 8 with 1M NaCl (flow rate: 3 mL/min). Examples of purification chro-
matographs can be found in Supplementary Figs. 13 and 14.

Polyacrylamide gel electrophoresis. SDS-PAGE was run using Novex Wedge-
Well 14% Tris-Glycine Mini Gels (Invitrogen), staining with Coomassie Brilliant
Blue. Native PAGE was run using NativePAGE™ 3–12% Bis-Tris Protein Gels
(Invitrogen), running either under regular Bis-Tris buffer conditions or using
NativePAGE running buffers (Invitrogen) for Blue Native PAGE. Color Prestained
Protein Standard, Broad Range 11–245 kDa (NEB) was used as a ladder for SDS-
PAGE (marked as “M1”), while NativeMark Unstained Protein Standard (Life
Technologies) was used for native PAGE (marked as “M2”). Gel images were
captured on a ChemiDoc MP Imaging System (Bio-Rad), using the accompanying
Image Lab software to approximate band intensities for densitometry measure-
ments. Gel densitometry was carried out using the in-built quantification tools on
the ImageLab software (Bio-Rad).

Mass spectrometry. Protein identification of SDS-PAGE gel bands was carried
out at the HMS Taplin Mass Spectrometry Facility. Coomassie blue stained gels
were destained. Single bands were excised with as little excess as possible. Excised
gel bands were cut into ∼1 mm3 pieces. Gel pieces were washed and dehydrated
with acetonitrile for 10 min. Pieces were then completely dried in a speed-vac.
Rehydration of the gel pieces was done with 50 mM NH4HCO3 solution containing
12.5 ng/µL modified sequencing-grade trypsin (Promega) at 4 °C. After 45 min,
excess trypsin solution was removed and replaced with 50 mM NH4HCO3 solution
to just cover the gel pieces. Samples were incubated at 37 °C overnight. Peptides
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were extracted by removing the NH4HCO3 solution, followed by one wash with
50% acetonitrile and 1% formic acid. The extracts were then dried in a speed-vac
(1 h). The samples were stored at 4 °C until analysis. On the day of analysis the
samples were reconstituted in 5–10 μL of high-performance liquid chromatography
(HPLC) solvent A (2.5% acetonitrile, 0.1% formic acid). A nanoscale reverse-phase
HPLC capillary column was created by packing 2.6 μm C18 spherical silica beads
into a fused-silica capillary (100 μm inner diameter, 30 cm length) with a flame-
drawn tip. After equilibrating the column, each sample was loaded via a Famos
auto sampler (LC Packings) onto the column. A gradient was formed and peptides
were eluted with increasing concentrations of solvent B (97.5% acetonitrile, 0.1%
formic acid). As peptides eluted they were subjected to electrospray ionization and
then entered into an LTQ Orbitrap Velos Pro ion-trap mass spectrometer (Thermo
Fisher Scientific). Peptides were detected, isolated, and fragmented to produce a
tandem mass spectrum of specific fragment ions for each peptide. Peptide
sequences (and hence protein identity) were determined by matching protein
databases with the acquired fragmentation pattern using Sequest (Thermo Fisher
Scientific). All databases include a reversed version of all the sequences, and the
data were filtered to between a 1% and 2% peptide false discovery rate.

Transmission electron microscopy. Electron microscopy was conducted on a
Tecnai G2 Spirit BioTWIN. Encapsulin samples were diluted to approximately
0.1 mg/mL for adsorption onto Formvar carbon coated gold grids 200 mesh
FCF200-Au (EMS) after glow discharge. Excess sample was removed by blotting on
filter paper (Whatman). Uranyl formate or uranyl acetate was then applied for
negative staining. Particle size distributions for selected TEM images can be found
in Supplementary Fig. 15.

Fluorescence measurements. Bulk yeast images—Cells were inoculated into 5 mL
of SD-His and grown overnight. After normalizing for OD, the cells were resus-
pended in 2 mL of water, and 200 μL of this suspension was added to 2 mL of either
SD-His or induction media. After 24 h growth at 30 oC, cells were pelleted and
resuspended in water normalizing to an OD value of 28. Images were taken on a
ChemiDoc MP Imaging System (Bio-Rad).

Plate-reader measurements—Samples were prepared in the same manner as for
bulk imaging, normalizing to an OD value of 1.5, with fluorescence intensity
measurements carried out on a Synergy Neo plate reader (BioTek), with excitation/
emission wavelengths of 500/535 nm for mNeonGreen and 515/545 nm for Venus.
Measurements were carried out in independent biological quadruplicate
experiments, each consisting of technical triplicates.

Fluorescence microscopy—Cells prepared for bulk imaging were also imaged
directly on a Nikon TE 2000 microscope in glass bottom dishes (MatTek, 35 mm,
uncoated, no. 1.5) under agar pad. Microscope light source power, detector gain,
and image processing settings were kept consistent between images and samples to
ensure the validity of any comparative conclusions drawn. Extra images at lower
magnification can be found in Supplementary Figs. 16 and 17.

Cyclohexamide chase experiment—Cells were first grown using the same
protocol as for bulk imaging described above. From the 24 h induced and non-
induced cultures, 1 mL of each culture was pelleted and resuspended into 10 mL of
fresh media (OD ~0.8) and grown at 30 oC for 40 min. After this, 100 μg/μL
cyclohexamide was added to each culture, and at each time point, 400 μL aliquots
were taken, resuspended in 100 μL H2O and snap frozen for later measurement.
Fluorescence intensity measurements were obtained by the plate-reader method
described above. Measurements were carried out in independent biological
quadruplicate experiments, each consisting of technical triplicates.

Enzymatic assays. Enzyme assays were conducted in technical triplicate. The
assay conditions were 100 mM potassium phosphate buffer pH 7, 1 mM MgCl2,
0.5 mM thiamine pyrophosphate, 1 mM dopamine hydrochloride, 1 mM 4-HPP
and 75 μg/mL encapsulin. Reactions were conducted at 30 oC in 1 mL volumes. At
each time point, 100 μL was removed from the reaction and 100 μL of acetonitrile
(MeCN) was added. Any precipitated debris was pelleted, and then 5 μL of the
supernatant was added to 45 μL of water to give the final sample ready for QTOF-
LCMS analysis.

Norcoclaurine production was measured on a QTOF-LCMS (Agilent 6530),
running samples on a Orpak CDBS 453 column (Shodex). The method used for
analysis was: 0–9 min 0% B, 9–11 min 0 to 95% B, 11–14 min 95% B, 14–16 min 95
to 0% B, 16–23 min 0% B (flow rate 0.5 mL/min; A= 95% H2O+ 5% MeCN with
0.1% formic acid, B= 100% MeCN). The MS acquisition parameters were as
follows: positive ion mode, gas temperature: 325 oC, drying gas: 10 L/min,
nebulizer: 12 psig, VCap: 3500 V, mass range: 100–1000m/z, acquisition rate:
2 spectra/s, acquisition time: 500 ms/spectrum. Norcoclaurine standards for
generating a standard curve were obtained from Toronto Research Chemicals
(Supplementary Fig. 18).

Data availability. The sequence data, in GenBank format, for all the constructs
created in this study are available in Supplementary Data 1. All other data that
support the findings of this study are available from the corresponding author
upon request.
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